The Symposium’s theme “Finding Earth 2.0” is extremely timely and focuses on how both the process to definitively find and the indisputable discovery of an exoplanet capable of supporting Earth-evolved or terran life—an Earth analog or Earth 2.0 so to speak—are game changing.
The Symposium asks and seeks answers to what specific capabilities and systems—scientific, technical and societal—will be needed over the next 5-25 years; not to merely suggest or catalog earth analogue candidate exoplanets, but to identify at least one definitive Earth 2.0
Finding Earth 2.0 has profound implications for technology, knowledge and systems across the spectrum of human experience, skills, capacities, perspectives and ambitions.
Program Highlights Below
The conference will be held at the Santa Clara Marriott in Silicon Valley, CA | View Full Program
Presenters in Designing for Interstellar are asked to consider parameters for designing probes, and vehicles or habitats for robotic or human crews –Earth, Earth orbit and deep space based—that will actively accelerate finding an analogue Earth and which may be implemented within the next 5, 10, 15 and 25 years.
What aspects of design will be impacted by the various methodologies instituted to discover a planet outside of our solar system capable of supporting terran life? What are the design parameters that should be met to optimize the chances and rapidity in which such a planet may be identified?
Designs for probes and crewed vehicles must address the unique characteristics and extreme conditions of isolated research bases, deep space and interstellar space. The equipment, structures, tools, materials, cleaning and maintenance processes—the accoutrements of life and work— surround and create an operating environment or habitat. Such an environment protects, nourishes and facilitates daily activities. For living things, the environment must support the myriad physical needs. For higher order creatures, physical, mental and emotional requirements must be met as well.
Understanding, optimizing and manufacturing design for sustainability are critical for success—with a living crew or robotic probes.
A major aspect of discovering details of exoplanets is to get closer to them, to take samples and test actual physical properties beyond our solar system. Profound breakthroughs in the generation, storage and control of energy for propulsion, as well as communications and data gathering instruments are required to get to the interstellar medium in 10-20 years, much less to reach another star. Such breakthroughs are accompanied by robust leaps in theory and technology paradigms, and also incremental advances in engineering technology deployable in the next 5, 10 and 15 years.
Presenters in Propulsion and Energy are asked to present research and supportable ideas on how to address the design and deployment of instruments, probes and vehicles that will accelerate travelling beyond our solar system and closer to exoplanets within the next 25 years.
Whether enroute or having arrived at a destination, robust capabilities to gather, analyze, compile, store, retrieve, transmit and receive information is essential to any deep space journey.
Information, communication and data transmission capacity are constrained by vast distances, signal degradation, energy availability, bandwidth, data management, time delays, direction and pointing accuracy, instrumentation as well as existing earth based and deep space networks.
Presenters in Data Communications and Information Technology are asked to present research, concepts and systems that facilitate the process of finding earth analogues and that are actionable within the next 5, 10, and 15 years. Areas for discussion include ground and earth orbiting equipment and systems; advances in artificial intelligence (AI), as well as solar and extra-solar system networks and capabilities. In addition discussion of software, hardware, syntax and design techniques that aid in or result from the discovery of Earth 2.0 are welcome.
How will the myriad fields making up the life sciences impact and be impacted by finding an indisputable Earth 2.0? Presenters are asked to consider the following areas for discussion from the perspective of experiments, projects and work that may reasonably be started/achieved within the next 15 years.
Biology and Astrobiology. Most life sciences contributions to finding exoplanets have targeted the ability of a planet to support life with origins on Earth. Yet, as ”Earth-evolved” or terran humans, plants and other life forms travel deeper into space, farther away from Earth and eventually our solar system, greater understanding of the fundamentals of life mechanisms is demanded. Concurrently, as the search for life beyond the Earth continues, a re-evaluation of what is defined as “life” may be needed.
Once an exoplanet is identified as within the “goldilocks zone” what markers should be used to evaluate life that may have evolved outside of Earth? What questions about Earth ecosystems should be asked and answered? Also, how might the interstellar environment itself be used to advance life science research?
Health and Bioengineering. Assuming the search for Earth 2.0 will require humans in deep space for extended periods of time, how can the issues surrounding support of human crews be addressed? The health care needs to sustain human life over long periods of travel and colonization in unfriendly environments must be met. Preparation for radical shifts in nutrition, potential therapeutics, growth and development, physiology and ethics must be made.
Biomedical engineering advances knowledge in engineering, biology and medicine, and improves human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice. Furthering knowledge and understanding of living systems through innovative and substantive application of engineering sciences based experimental and analytical techniques exist side by side with the development of new devices, algorithms, processes and systems that advance biology, and medicine.
Biomaterials, tissue engineering, personal protection, human and agricultural waste material and recycling are other examples of biological related systems engineering that will have to be designed and built in space.
How will the process of looking for and then definitively finding “another Earth” impact the social, cultural, economic, educational, religious, legal, political and ethical aspects of life here on Earth?
How and in response to what do we create the belief systems that guide us? Who will we be and what will define our societies, morality, ethics, cultures, laws, economies, relationships and identities?
Examples.
Does biodiversity of life on Earth become more or less important or valued? What types of introspection or outward ambition are prompted? What are the implications for education—locally, nationally and globally?
Do we purposefully broadcast “We are here” or become more conscious of our “radio wave spillage” into space? Does the U.N. get more or less money? Does the military become more important and funded more? Is now the time to think about becoming “Earthlings”? What treaties need to be in place? Will more investment in space-based tech become the trend?
Presenters are asked to present on how civilizations and its mechanisms will influence or be influenced by finding an Earth 2.0 in the next 5, 10, 15 and 25 years.
Great ideas arise through unique individual observations, from people of all ages and educational backgrounds. Students are especially encouraged to submit to this session.
The Poster Sessions are an opportunity to present snapshots of early concepts and experiments. Presentation in the poster format allows in-depth discussion in a small group setting. Presenters are welcome to present on any of the topics from the other technical tracks as well as other topics germane to the theme Finding Earth 2.0. Suitability is at the discretion of the Track Chair.
Finding Earth 2.0 has profound implications for and impact upon technology, knowledge and systems across the spectrum of human skills, capacities, experiences and perspectives on the future.
100 Year Starship Public Symposium 2015 explores what capabilities and systems—scientific, technical and social—will be needed over the next 5-25 years to not to merely suggest or catalog earth analogue candidate exoplanets, but to identify at least one definitive Earth 2.0—and to consider how such a discovery itself will impact our world and space exploration.
Submissions now closed, however please remember to submit for the 2016 Symposium
Standard Access
Includes receptions, all plenary sessions, keynote luncheons, networking sessions, catered breaks,
and Science Fiction Stories Night.
Prime Access
Includes all standard access, plus Accelerator ticket to Accelerating Creativity, electronic 2015 Symposium Proceedings when published, 2015 T-shirt & other gifts
Friday – $300 Includes Science Fiction Stories Night
Saturday – $400 Includes Accelerating Creativity (Accelerator Level)
Sunday – $200 Includes Special Networking Sessions
Accelerating Creativity
Event Level – $75 Accelerator Level – $100
Science Fiction Stories Night
Includes Author Panel, Book Signing and Canopus Award Reception
Early Bird discounts on stated rates available until September 30th.
100YSS Standard and Professional Membership discounts can be applied.
Student rates available for all packages, passes, and events. Must show student ID.
Includes all plenary sessions, networking sessions, luncheon, catered breaks and Science Fiction Stories Night Must present valid school ID upon registration. Business attire required.
Student Pass
Special Student Rate $225
All plenary sessions, networking sessions, luncheon
catered breaks and Science Fiction Stories Night