100 Year Starship

100YSS is an independent, non-governmental, long-term initiative which explores radical leaps in knowledge. 100YSS Principal, Dr. Mae Jemison, leads this audacious journey.
Learn More

Canopus Award

The Canopus Award recognizes writing contributions that promote the dream and goal of interstellar travel. Meet Canopus Award Judge, J.Daniel Batt, Science Fiction Author.

Register Now!

George Whitesides is responsible for guiding all aspects of building the world’s first commercial spaceline including our spaceflight program as well as our small satellite launch capability.

Be the First to Know about 100YSS Activities!

Speakers & Special Guests

FINDING EARTH 2.0 100 Year Starship Public Symposium 2015

The Symposium’s theme “Finding Earth 2.0” is extremely timely and focuses on how both the process to definitively find and the indisputable discovery of an exoplanet capable of supporting Earth-evolved or terran life—an Earth analog or Earth 2.0 so to speak—are game changing.

The Symposium asks and seeks answers to what specific capabilities and systems—scientific, technical and societal—will be needed over the next 5-25 years; not to merely suggest or catalog earth analogue candidate exoplanets, but to identify at least one definitive Earth 2.0

Finding Earth 2.0 has profound implications for technology, knowledge and systems across the spectrum of human experience, skills, capacities, perspectives and ambitions. 

Program Highlights Below

The conference will be held at the  Santa Clara Marriott in  Silicon Valley, CA | View Full Program


Day 1
30 Oct 2015
Day 2
31 Oct 2015

Special Event: 100YSS Canopus Awards

100YSS celebrates the Inaugural year of our Canopus Awards for Writing. Meet the finalists in the Original Fiction and Non-Fiction writing and Previously Published Original Fiction and Non-Fiction categories. We...
Read More

Science Fiction Stories Night, Canopus Awards for Excellence in Interstellar Writing, & Author Book signing hosted by Borderlands Bookstore

(Open to the Public- Tickets Available) Science fiction frequently leads to science fact. And the extremes of scientific discovery today fuel the imagination and possibilities that science fiction writers catapult...
Read More

Accelerating Creativity: Reception

Program: Artificial Intelligence & Seeking New Worlds: Mickey Fisher, creator of the CBS space drama series EXTANT, in conversation with Dr. Mae Jemison and Dr. Karl Aspelund consider the potential...
Read More
Dr. Mae C. Jemison
Mickey Fisher
Karl Aspelund, PhD

Technical Tracks

2015 Tech Track Topics

Designing for Interstellar

Presenters in Designing for Interstellar are asked to consider parameters for designing probes, and vehicles or habitats for robotic or human crews –Earth, Earth orbit and deep space based—that will actively accelerate finding an analogue Earth and which may be implemented within the next 5, 10, 15 and 25 years.

What aspects of design will be impacted by the various methodologies instituted to discover a planet outside of our solar system capable of supporting terran life? What are the design parameters that should be met to optimize the chances and rapidity in which such a planet may be identified?

Designs for probes and crewed vehicles must address the unique characteristics and extreme conditions of isolated research bases, deep space and interstellar space. The equipment, structures, tools, materials, cleaning and maintenance processes—the accoutrements of life and work— surround and create an operating environment or habitat. Such an environment protects, nourishes and facilitates daily activities. For living things, the environment must support the myriad physical needs. For higher order creatures, physical, mental and emotional requirements must be met as well.

Understanding, optimizing and manufacturing design for sustainability are critical for success—with a living crew or robotic probes.

Propulsion and Energy

A major aspect of discovering details of exoplanets is to get closer to them, to take samples and test actual physical properties beyond our solar system. Profound breakthroughs in the generation, storage and control of energy for propulsion, as well as communications and data gathering instruments are required to get to the interstellar medium in 10-20 years, much less to reach another star. Such breakthroughs are accompanied by robust leaps in theory and technology paradigms, and also incremental advances in engineering technology deployable in the next 5, 10 and 15 years.

Presenters in Propulsion and Energy are asked to present research and supportable ideas on how to address the design and deployment of instruments, probes and vehicles that will accelerate travelling beyond our solar system and closer to exoplanets within the next 25 years.

Data Communications and Information Technology

Whether enroute or having arrived at a destination, robust capabilities to gather, analyze, compile, store, retrieve, transmit and receive information is essential to any deep space journey.

Information, communication and data transmission capacity are constrained by vast distances, signal degradation, energy availability, bandwidth, data management, time delays, direction and pointing accuracy, instrumentation as well as existing earth based and deep space networks.

Presenters in Data Communications and Information Technology are asked to present research, concepts and systems that facilitate the process of finding earth analogues and that are actionable within the next 5, 10, and 15 years. Areas for discussion include ground and earth orbiting equipment and systems; advances in artificial intelligence (AI), as well as solar and extra-solar system networks and capabilities. In addition discussion of software, hardware, syntax and design techniques that aid in or result from the discovery of Earth 2.0 are welcome.

Life in Space – Health, Astrobiology, Earth Biology and Bioengineering

How will the myriad fields making up the life sciences impact and be impacted by finding an indisputable Earth 2.0? Presenters are asked to consider the following areas for discussion from the perspective of experiments, projects and work that may reasonably be started/achieved within the next 15 years.

Biology and Astrobiology. Most life sciences contributions to finding exoplanets have targeted the ability of a planet to support life with origins on Earth. Yet, as ”Earth-evolved” or terran humans, plants and other life forms travel deeper into space, farther away from Earth and eventually our solar system, greater understanding of the fundamentals of life mechanisms is demanded. Concurrently, as the search for life beyond the Earth continues, a re-evaluation of what is defined as “life” may be needed.

Once an exoplanet is identified as within the “goldilocks zone” what markers should be used to evaluate life that may have evolved outside of Earth? What questions about Earth ecosystems should be asked and answered? Also, how might the interstellar environment itself be used to advance life science research?

Health and Bioengineering. Assuming the search for Earth 2.0 will require humans in deep space for extended periods of time, how can the issues surrounding support of human crews be addressed? The health care needs to sustain human life over long periods of travel and colonization in unfriendly environments must be met. Preparation for radical shifts in nutrition, potential therapeutics, growth and development, physiology and ethics must be made.

Biomedical engineering advances knowledge in engineering, biology and medicine, and improves human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice. Furthering knowledge and understanding of living systems through innovative and substantive application of engineering sciences based experimental and analytical techniques exist side by side with the development of new devices, algorithms, processes and systems that advance biology, and medicine.

Biomaterials, tissue engineering, personal protection, human and agricultural waste material and recycling are other examples of biological related systems engineering that will have to be designed and built in space.

Becoming an Interstellar Civilization

How will the process of looking for and then definitively finding “another Earth” impact the social, cultural, economic, educational, religious, legal, political and ethical aspects of life here on Earth?

How and in response to what do we create the belief systems that guide us? Who will we be and what will define our societies, morality, ethics, cultures, laws, economies, relationships and identities?


Does biodiversity of life on Earth become more or less important or valued? What types of introspection or outward ambition are prompted? What are the implications for education—locally, nationally and globally?

Do we purposefully broadcast “We are here” or become more conscious of our “radio wave spillage” into space? Does the U.N. get more or less money? Does the military become more important and funded more? Is now the time to think about becoming “Earthlings”? What treaties need to be in place? Will more investment in space-based tech become the trend?

Presenters are asked to present on how civilizations and its mechanisms will influence or be influenced by finding an Earth 2.0 in the next 5, 10, 15 and 25 years.

Poster Session

Great ideas arise through unique individual observations, from people of all ages and educational backgrounds. Students are especially encouraged to submit to this session.

The Poster Sessions are an opportunity to present snapshots of early concepts and experiments. Presentation in the poster format allows in-depth discussion in a small group setting. Presenters are welcome to present on any of the topics from the other technical tracks as well as other topics germane to the theme Finding Earth 2.0. Suitability is at the discretion of the Track Chair.

Why search for Earth 2.0?

Finding Earth 2.0 has profound implications for and impact upon technology, knowledge and systems across the spectrum of human skills, capacities, experiences and perspectives on the future.

100 Year Starship Public Symposium 2015 explores what capabilities and systems—scientific, technical and social—will be needed over the next 5-25 years to not to merely suggest or catalog earth analogue candidate exoplanets, but to identify at least one definitive Earth 2.0—and to consider how such a discovery itself will impact our world and space exploration.

Submissions now closed, however please remember to submit for the 2016 Symposium

Registration Information

Standard Access
415.00 USD

Standard Access 
Includes receptions, all plenary sessions, keynote luncheons, networking sessions, catered breaks,
and Science Fiction Stories Night.

Book Now
Prime Access
695.00 USD

Prime Access 
Includes all standard access, plus Accelerator ticket to Accelerating Creativity, electronic 2015 Symposium Proceedings when published, 2015 T-shirt & other gifts

Book Now
Daily Passes
300.00 USD

Friday – $300 Includes Science Fiction Stories Night
Saturday – $400 Includes Accelerating Creativity (Accelerator Level)
Sunday – $200 Includes Special Networking Sessions

Book Now
Special Events
75.00 USD

Accelerating Creativity
Event Level – $75 Accelerator Level – $100
Science Fiction Stories Night
Includes Author Panel, Book Signing and Canopus Award Reception

Book Now

Early Bird discounts on stated rates available until September 30th.
100YSS Standard and Professional Membership discounts can be applied.
Student rates available for all packages, passes, and events. Must show student ID.


Student Pass

Includes all plenary sessions, networking sessions, luncheon, catered breaks and Science Fiction Stories Night Must present valid school ID upon registration. Business attire required.

Student Pass
225.00 USD

Student Pass
Special Student Rate $225
All plenary sessions, networking sessions, luncheon
catered breaks and Science Fiction Stories Night


Book Now


Santa Clara Marriott
Space is Limited, Book your Room TODAY!
*Special Rates for 100YSS Guests
+1-408-988-1500[email protected]



  • RT @NatureAstronomy: Phosphine is to Venus as methane is to Mars? 20 parts-per-million of phosphine have been detected in the temperate clo… 218 days ago
  • RT @SallyRideSci: Mae Jemison, the 1st woman of color in space, has been honored with the Cato T. Laurencin MD PhD Lifetime Research Award… 244 days ago
  • RT @WIRED: Interstellar space exploration has long been the stuff of science fiction. But it could be a reality as soon as 2030. https://t.… 257 days ago

The Impact of Knowing